Wildlife, Animals, and Plants
|
|
Introductory
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
ABBREVIATION :
SALPLNP
SYNONYMS :
Salix pulchra Cham.
Salix pulchra var. yukonensis Schneid.
SCS PLANT CODE :
SAPLP
COMMON NAMES :
diamondleaf willow
tealeaf willow
tea-leaved willow
thin red willow
TAXONOMY :
The currently accepted scientific name of diamondleaf willow is Salix
planifolia Pursh ssp. pulchra [1,5].
The species S. planifolia Pursh has been variously interpreted by
taxonomists. Hitchcock and Cronquist [16] and Hulten [17] considered it
a North American form of a circumboreal species: S. phylicifolia L.
ssp. planifolia (Pursh) Hiitonen. However, recent studies have shown
that chromosome counts from North American plants differ from European
plants. Thus, Argus [1] and Dorn [8] consider North American and
Eurasian plants distinct species:
Salix phylicifolia = European and Asian plants
Salix planifolia = North American plants
Two subspecies of S. planifolia Pursh, separated primarily
geographically, are recognized [1,5]:
ssp. planifolia - planeleaf willow (primarily south of northern
British Columbia)
ssp. pulchra (Cham.) Argus - diamondleaf willow (Alaska and adjacent
Northwest Territories)
This report's discussion is restricted to the northwestern subspecies,
diamondleaf willow. Two varieties of diamondleaf willow are recognized
[1,5]:
var. pulchra
var. yukonensis (Schneid.) Argus
LIFE FORM :
Shrub
FEDERAL LEGAL STATUS :
No special status
OTHER STATUS :
NO-ENTRY
COMPILED BY AND DATE :
Ronald Uchytil, August 1991
LAST REVISED BY AND DATE :
NO-ENTRY
AUTHORSHIP AND CITATION :
Uchytil, Ronald J. 1991. Salix planifolia ssp. pulchra. In: Remainder of Citation
DISTRIBUTION AND OCCURRENCE
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
GENERAL DISTRIBUTION :
Diamondleaf willow grows throughout most of Alaska and the Yukon
Territory. It also occurs in the northwestern Northwest Territories,
and in northwestern British Columbia. It is not found south of latitude
56 degrees N in British Columbia [5].
The two varieties are distributed as follows [1]:
var. pulchra - Generally throughout most of Alaska but absent from the
Aleutian Islands and southern coastal Alaska from
Prince William Sound eastward. Uncommon in the Yukon
Territory and the Tanana River Lowlands.
var. yukonensis - Common in the Yukon, Tanana, and Kuskokwim river
valleys and their tributaries. Also in the northern
and southern Yukon Territory, Northwest
Territories, and northern British Columbia.
ECOSYSTEMS :
FRES11 Spruce - fir
FRES44 Alpine
STATES :
AK BC NT YT
ADMINISTRATIVE UNITS :
DENA LACL WRST YUCH
BLM PHYSIOGRAPHIC REGIONS :
NO-ENTRY
KUCHLER PLANT ASSOCIATIONS :
NO-ENTRY
SAF COVER TYPES :
201 White spruce
202 White spruce - paper birch
203 Balsam poplar
204 Black spruce
254 Black spruce - paper birch
SRM (RANGELAND) COVER TYPES :
NO-ENTRY
HABITAT TYPES AND PLANT COMMUNITIES :
Diamondleaf willow is a dominant or codominant in numerous sedge-shrub
tundra communities mostly north of the Brooks Range in Alaska.
Associated carices include aquatic sedge (Carex aquatilis), Bigelow
sedge (C. bigelowii), and shortstalk sedge (C. microchaeta). Associated
willows include Richardson willow (Salix lanata) and netleaf willow (S.
reticulata). It may also codominate shrubby tundra communities with
dwarf birches (Betula spp.), numerous huckleberries (Vaccinium spp.),
northern labrador-tea (Ledum palustre), Richardson willow, Alaska bog
willow (S. fuscescens), least willow (S. rotundifolia), and other
willows (Salix spp.) [15,34]. In interior Alaska, it is often a
component of seral willow communities on floodplain terraces, forming
thickets with grayleaf willow (S. glauca), Richardson willow, and alders
(Alnus spp.) [34].
Published classifications listing diamondleaf willow as a dominant in
community types (cts) are presented below:
Area Classification Authority
ne AK general veg. cts Hanson 1953
AK general veg. cts Viereck & Dyrness 1980
VALUE AND USE
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
WOOD PRODUCTS VALUE :
NO-ENTRY
IMPORTANCE TO LIVESTOCK AND WILDLIFE :
Diamondleaf willow is an important moose browse in Alaska [23,26]. It
is also browsed by snowshoe hare and Dall sheep [35].
Willows in general are a preferred food and building material of beaver
[27]. Willow shoots, catkins, leaves, and buds are eaten by numerous
small mammals and birds [14]. In Alaska, willows are an important food
of ptarmigan [35].
PALATABILITY :
Diamondleaf willow is a preferred moose browse; however, it is less
palatable than Alaska willow (Salix alaxensis), sandbar willow (S.
interior), and littletree willow (S. arbusculoides) [23].
NUTRITIONAL VALUE :
Diamondleaf willow browse has moderate to relatively high moisture,
protein, and caloric content. It provides a nutritious food supply for
wintering moose [26].
COVER VALUE :
Diamondleaf willow thickets provide cover for wildlife.
VALUE FOR REHABILITATION OF DISTURBED SITES :
In Alaska, numerous willow species are used for wildlife habitat
restoration, streambank protection, and reclamation of sites disturbed
by mining and construction. Three general methods of planting willows
on disturbed sites in northern latitudes are [21,24,38]: (1) planting
stem cuttings, (2) transplanting containerized rooted cuttings or
seedlings, and (3) planting bundles of dormant branches.
OTHER USES AND VALUES :
All willows produce salacin, which is closely related chemically to
aspirin. Native Americans used various preparations from willows to
treat tooth ache, stomach ache, diarrhea, dysentery, and dandruff [22].
Native Americans also used flexible willow stems for making baskets,
bows, arrows, scoops, and fish traps [18]. Native Alaskan peoples
ate young diamondleaf willow leaves both raw and cooked [35].
MANAGEMENT CONSIDERATIONS :
NO-ENTRY
BOTANICAL AND ECOLOGICAL CHARACTERISTICS
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
GENERAL BOTANICAL CHARACTERISTICS :
Diamondleaf willow is an upright, multiple-stemmed, deciduous shrub
generally between 3 and 6 feet (0.9 and 1.8 m) tall but occasionally up
to 15 feet (4.6 m) [35]. In exposed arctic and alpine sites it may
assume a low, prostrate form [35]. It has smooth, gray bark. Male and
female flowers occur on separate plants in 0.5- to 3-inch-long erect
catkins [1]. The fruit is a two-valved silky,pubescent capsule 0.3 inch
(8 mm) long [35].
RAUNKIAER LIFE FORM :
Undisturbed State: Phanerophyte (nanophanerophyte)
Burned or Clipped State: Hemicryptophyte
Burned or Clipped State: Therophyte
REGENERATION PROCESSES :
Diamondleaf willow's primary mode of reproduction is sexual. It
produces an abundance of small, light-weight seeds. Like most willows,
it probably begins seed production at an early age (between 2 and 10
years) [14]. At maturity, the fruit splits open, releasing the seed.
Each seed has a cottony down that aids in dispersal by wind and water
[6]. Seeds are dispersed during the growing season and remain viable
for only about 1 week [6]. The seeds contain significant amounts of
chlorophyll so that photosynthesis generally occurs as soon as the seed
is moistened. Germination occurs within 24 hours of dispersal on moist
seedbeds [6]. In germination tests, 95 to 100 percent of seeds
germinated within 1 to 3 days at temperatures between 41 and 77 degrees
F (5-25 C) [7]. Exposed mineral soils provide the best seedbed.
Germination is inhibited by litter [14].
Vegetative reproduction: Diamondleaf willow sprouts from the root crown
if aboveground stems are broken or destroyed by cutting, flooding, or
fire. Detached stem fragments form adventitious roots if they remain
moist. Thus portions of stems will root naturally if buried in moist
soil [14].
SITE CHARACTERISTICS :
Diamondleaf willow grows in arctic and alpine tundra, open black and
white spruce (Picea mariana, P. glauca) woodlands, muskegs, and carex
fens [1]. In open spruce woodlands, diamondleaf willow trees usually
occur as scattered individuals but become more dense along riparian
areas [26,35]. In open black spruce woodlands, diamondleaf willow often
attains highest cover in areas with shallow, perched water tables on the
surface of permafrost [9]. In the mountains of interior Alaska, it
often forms extensive thickets above timberline [17]. It also forms
extensive thickets in treeless bogs, and at treeline in northern Alaska
[35]. In arctic tundra it grows on river banks, islands, river
terraces, and on rolling uplands [4].
SUCCESSIONAL STATUS :
Diamondleaf willow is a component of stable, shrub-dominated tundra
communities [3,4]. It is intolerant of shade, and uncommon in climax
boreal forests, unless they remain relatively open. Foote [12] reported
diamondleaf willow occurring in early successional stages following
wildfire in black spruce forests. It reached its greatest abundance
about 30 years after fire, but thereafter declined as it was overtopped
by trees; by 56 years after fire, it was absent. Along the Chena River
in interior Alaska, diamondleaf willow was not found in successional
terrace communities but grew only as scattered individuals in climax
black spruce/sphagnum moss stands [29]. These climax stands provided
favorable sites for diamondleaf willow because they were relatively open
and wet due to extensive permafrost.
SEASONAL DEVELOPMENT :
Diamondleaf willow catkins appear in the early spring before the leaves
are fully expanded [35]. In Alaska, flowering generally occurs in May
and June, and seeds generally mature in late May, June, and July [7,35].
Seeds are dispersed soon after ripening; dispersal occurs later with
increasing latitude and elevation. For example, seeds are dispersed
from late May to early June in the Fairbanks area but are not dispersed
until early August along the Meade River [7].
FIRE ECOLOGY
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
FIRE ECOLOGY OR ADAPTATIONS :
Diamondleaf willow is a fire-adapted species. Most plants sprout from
the root crown following top-kill by fire [10,37]. Viereck and
Schandelmeier [36] reported that even old, decadent willows sprout
prolifically immediately after fire. The sprouting ability of willows
is apparently more vigorous and prolific than that of birches or alders
[36]. Diamondleaf willow's abundant, wind-dispersed seeds colonize
burned areas [30].
POSTFIRE REGENERATION STRATEGY :
survivor species; on-site surviving root crown or caudex
off-site colonizer; seed carried by wind; postfire years 1 and 2
off-site colonizer; seed carried by animals or water; postfire yr 1&2
FIRE EFFECTS
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
IMMEDIATE FIRE EFFECT ON PLANT :
Severe fires in white and black spruce forests where diamondleaf willow
grows as scattered individuals can kill willows by completely removing
soil organic layers and charring the roots [39]. Less severe fires only
top-kill plants.
DISCUSSION AND QUALIFICATION OF FIRE EFFECT :
NO-ENTRY
PLANT RESPONSE TO FIRE :
Diamondleaf willow sprouts from the root crown following most fires.
Sprouts develop more rapidly than seedlings do and probably reach over
20 inches (50 cm) in height by the end of the first growing season [37].
DISCUSSION AND QUALIFICATION OF PLANT RESPONSE :
Diamondleaf willow is common on recent burns in lowland black spruce
forests in interior Alaska. One 11-year-old burn had about 4,700
diamondleaf, Alaska, and grayleaf willow stems per acre (11,600/ha), and
lesser amounts of spruce and poplar [37]. Sampling numerous burns in
lowland black spruce types in interior Alaska, Foote [12] observed that
diamondleaf willow averaged 295 stems per acre (728/ha) on 1- to
5-year-old burns, and 771 stems per acre (1,905/ha) on 5- to 30-year-old
burns. Its density probably increases or remains constant for up to 30
years after a forest fire, but thereafter declines as young trees
overtop it [12].
Since diamondleaf willow seeds are dispersed in the summer and remain
viable for only about one week, the season of a fire determines if it
will establish during the first or subsequent postfire years [30,36].
Fire severity affects the mode of diamondleaf willow postfire recovery.
Following light fires it recovers quickly, sending up new shoots from
undamaged root crowns. Few if any seedlings establish following this
type of burn because organic soil layers, which prevent seedling
establishment, are only partially consumed [32]. Following severe
fires, however, the primary mode of recovery is seedling establishment.
Severe fires that burn deep into organic soils kill willows but expose
mineral soils, which provide excellent seedbeds. Nine years after a
wildfire in a black spruce woodland in interior Alaska, diamondleaf
willow cover reached 24 percent on scarified firelines within the burn,
due to rapid seedling establishment. In the main burn the 6-to
8-inch-thick (15-20 cm) organic layer was only partially burned. Here,
diamondleaf willow reestablished by sprouting, and cover after 9 years
was only 3 percent [32]. Cover in nearby unburned areas was 2 percent.
FIRE MANAGEMENT CONSIDERATIONS :
Prescribed fire can be used to rejuvenate decadent willows.
REFERENCES
SPECIES: Salix planifolia ssp. pulchra | Diamondleaf Willow
REFERENCES :
1. Argus, George W. 1973. The genus Salix in Alaska and the Yukon.
Publications in Botany, No. 2. Ottowa, ON: National Museums of Canada,
National Museum of Natural Sciences. 279 p. [6167]
2. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals,
reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's
associations for the eleven western states. Tech. Note 301. Denver, CO:
U.S. Department of the Interior, Bureau of Land Management. 169 p.
[434]
3. Bliss, L. C. 1988. Arctic tundra and polar desert biome. In: Barbour,
Michael G.; Billings, William Dwight, eds. North American terrestrial
vegetation. Cambridge; New York: Cambridge University Press: 1-32.
[13877]
4. Bliss, L. C.; Cantlon, J. E. 1957. Succession on river alluvium in
northern Alaska. American Midland Naturalist. 58(2): 452-469. [14931]
5. Brayshaw, T. Christopher. 1976. Catkin bearing plants of British
Columbia. Occas. Pap. No. 18. Victoria, BC: The British Columbia
Provincial Museum. 176 p. [6170]
6. Brinkman, Kenneth A. 1974. Salix L. willow. In: Schopmeyer, C. S.,
technical coordinator. Seeds of woody plants in the United States.
Agric. Handb. 450. Washington, DC: U.S. Department of Agriculture,
Forest Service: 746-750. [5412]
7. Densmore, Roseann; Zasada, John. 1983. Seed dispersal and dormancy
patterns in northern willows: ecological and evolutionary significance.
Canadian Journal of Botany. 61: 3207-3216. [5027]
8. Dorn, Robert D. 1977. Willows of the Rocky Mountain States. Rhodora. 79:
390-429. [6000]
9. Dyrness, C. T.; Grigal, D. F. 1979. Vegetation-soil relationships along
a spruce forest transect in interior Alaska. Canadian Journal of Botany.
57: 2644-2656. [12488]
10. Dyrness, C. T.; Norum, Rodney A. 1983. The effects of experimental fires
on black spruce forest floors in interior Alaska. Canadian Journal of
Forest Research. 13: 879-893. [7299]
11. Eyre, F. H., ed. 1980. Forest cover types of the United States and
Canada. Washington, DC: Society of American Foresters. 148 p. [905]
12. Foote, M. Joan. 1983. Classification, description, and dynamics of plant
communities after fire in the taiga of interior Alaska. Res. Pap.
PNW-307. Portland, OR: U.S. Department of Agriculture, Forest Service,
Pacific Northwest Forest and Range Experiment Station. 108 p. [7080]
13. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others].
1977. Vegetation and environmental features of forest and range
ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of
Agriculture, Forest Service. 68 p. [998]
14. Haeussler, S.; Coates, D. 1986. Autecological characteristics of
selected species that compete with conifers in British Columbia: a
literature review. Land Management Report No. 33. Victoria, BC: Ministry
of Forests, Information Services Branch. 180 p. [1055]
15. Hanson, Herbert C. 1953. Vegetation types in northwestern Alaska and
comparisons with communities in other arctic regions. Ecology. 34(1):
111-140. [9781]
16. Hitchcock, C. Leo; Cronquist, Arthur. 1964. Vascular plants of the
Pacific Northwest. Part 2: Salicaceae to Saxifragaceae. Seattle, WA:
University of Washington Press. 597 p. [1166]
17. Hulten, Eric. 1968. Flora of Alaska and neighboring territories.
Stanford, CA: Stanford University Press. 1008 p. [13403]
18. Kovalchik, Bernard L.; Hopkins, William E.; Brunsfeld, Steven J. 1988.
Major indicator shrubs and herbs in riparian zones on National Forests
of central Oregon. R6-ECOL-TP-005-88. Portland, OR: U.S. Department of
Agriculture, Forest Service, Pacific Northwest Region. 159 p. [8995]
19. Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation
of the conterminous United States. Special Publication No. 36. New York:
American Geographical Society. 77 p. [1384]
20. Lyon, L. Jack; Stickney, Peter F. 1976. Early vegetal succession
following large northern Rocky Mountain wildfires. In: Proceedings, Tall
Timbers fire ecology conference and Intermountain Fire Research Council
fire and land management symposium; 1974 October 8-10; Missoula, MT. No.
14. Tallahassee, FL: Tall Timbers Research Station: 355-373. [1496]
21. McCluskey, D. Cal; Brown, Jack; Bornholdt, Dave; [and others]. 1983.
Willow planting for riparian habitat improvement. Tech. Note 363.
Denver, CO: U.S. Department of the Interior, Bureau of Land Management.
21 p. [6408]
22. Mozingo, Hugh N. 1987. Shrubs of the Great Basin: A natural history.
Reno, NV: University of Nevada Press. 342 p. [1702]
23. Peek, J. M. 1974. A review of moose food habits studies in North
America. Le Naturaliste Canadien. 101: 195-215. [7420]
24. Platts, William S.; Armour, Carl; Booth, Gordon D.; [and others]. 1987.
Methods for evaluating riparian habitats with applications to
management. Gen. Tech. Rep. INT-221. Ogden, UT: U.S. Department of
Agriculture, Forest Service, Intermountain Research Station. 177 p.
[6171]
25. Raunkiaer, C. 1934. The life forms of plants and statistical plant
geography. Oxford: Clarendon Press. 632 p. [2843]
26. Risenhoover, Kenneth L. 1989. Composition and quality of moose winter
diets in interior Alaska. Journal of Wildlife Management. 53(3):
568-577. [14930]
27. U.S. Department of Agriculture, Forest Service. 1937. Range plant
handbook. Washington, DC. 532 p. [2387]
28. U.S. Department of Agriculture, Soil Conservation Service. 1982.
National list of scientific plant names. Vol. 1. List of plant names.
SCS-TP-159. Washington, DC. 416 p. [11573]
29. Viereck, Leslie A. 1970. Forest succession and soil development adjacent
to the Chena River in interior Alaska. Arctic and Alpine Research. 2(1):
1-26. [12466]
30. Viereck, Leslie A. 1973. Wildfire in the taiga of Alaska. Quaternary
Research. 3: 465-495. [7247]
31. Viereck, Leslie A. 1979. Characteristics of treeline plant communities
in Alaska. Holarctic Ecology. 2: 228-238. [8251]
32. Viereck, Leslie A. 1982. Effects of fire and firelines on active layer
thickness and soil temperatures in interior Alaska. In: Proceedings, 4th
Canadian permafrost conference; 1981 March 2-6; Calgary, AB. The Roger
J.E. Brown Memorial Volume. Ottawa, ON: National Research Council of
Canada: 123-135. [7303]
33. Viereck, L. A.; Dyrness, C. T. 1979. Ecological effects of the
Wickersham Dome Fire near Fairbanks, Alaska. Gen. Tech. Rep. PNW-90.
Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific
Northwest Forest and Range Experiment Station. 71 p. [6392]
34. Viereck, L. A.; Dyrness, C. T.; Batten, A. R.; Wenzlick, K. J. 1992. The
Alaska vegetation classification. Gen. Tech. Rep. PNW-GTR-286. Portland,
OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest
Research Station. 278 p. [2431]
35. Viereck, Leslie A.; Little, Elbert L., Jr. 1972. Alaska trees and
shrubs. Agric. Handb. 410. Washington, DC: U.S. Department of
Agriculture, Forest Service. 265 p. [6884]
36. Viereck, Leslie A.; Schandelmeier, Linda A. 1980. Effects of fire in
Alaska and adjacent Canada--a literature review. BLM-Alaska Tech. Rep.
6. Anchorage, AK: U.S. Department of the Interior, Bureau of Land
Mangement, Alaska State Office. 124 p. [7075]
37. Wolff, Jerry O.; Zasada, John C. 1979. Moose habitat and forest
succession on the Tanana river floodplain and Yukon-Tanana upland. In:
Proceedings, North American Moose Conference and Workshop No 15; [Date
of conference unknown]; Kenai, AK. [Place of publication unknown].
[Publisher unknown]. 213-244. [6860]
38. Wright, Stoney. 1989. Advances in plant material and revegetation
technology in Alaska. In: Walker, D. G.; Powter, C. B.; Pole, M. W.,
compilers. Reclamation, a global perspective: Proceedings of the
conference; 1989 August 27-31; Calgary, AB. Rep. No. RRTAC 89-2. Vol. 1.
Edmonton, AB: Alberta Land Conservation and Reclamation Council:
107-116. [14361]
39. Zasada, J. 1986. Natural regeneration of trees and tall shrubs on forest
sites in interior Alaska. In: Van Cleve, K.; Chapin, F. S., III;
Flanagan, P. W.; [and others], eds. Forest ecosystems in the Alaska
taiga: A synthesis of structure and function. New York: Springer-Verlag:
44-73. [2291]
Index
Related categories for Species: Salix planifolia ssp. pulchra
| Diamondleaf Willow
|
|