|
|
|
|
Wildlife, Animals, and Plants |
|
INTRODUCTORY
ABBREVIATION:SYMORE SYNONYMS:Symphoricarpos utahensis Rydb. [22] NRCS PLANT CODE:
SYOR2 COMMON NAMES:
mountain snowberry TAXONOMY:
The scientific name of mountain snowberry is Symphoricarpos oreophilus A. Gray (Caprifoliaceae) [11,25,28,29,64]. LIFE FORM:Shrub FEDERAL LEGAL STATUS:No special status OTHER STATUS:No entry AUTHORSHIP AND CITATION:Aleksoff, Keith C. (1999, July). Symphoricarpos oreophilus. In: Remainder of Citation Species Index FEIS Home DISTRIBUTION AND OCCURRENCE
GENERAL DISTRIBUTION:Mountain snowberry is a widespread cordilleran species. It occurs from the foothills to high elevations throughout the western mountains ranges from British Columbia to Alberta and south to California, New Mexico, and northern Mexico [11,25]. ECOSYSTEMS:
FRES20 Douglas-fir STATES:AZ CA CO ID MT NV NM OR TX UT WA WY BC MEXICO BLM PHYSIOGRAPHIC REGIONS:
1 Northern Pacific Border KUCHLER PLANT ASSOCIATIONS:
K011 Western ponderosa forest SAF COVER TYPES:
206 Engelmann spruce-subalpine fir SRM (RANGELAND) COVER TYPES:
101 Bluebunch wheatgrass HABITAT TYPES AND PLANT COMMUNITIES:
Mountain snowberry is a dominant shrub species in numerous nonforested
and forested communities in the western United States. Habitat types using
mountain snowberry as an indicator species have been identified within
the Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor),
ponderosa pine (Pinus ponderosa), subalpine fir (A. lasiocarpa), Gambel
oak (Quercus gambelii), and quaking aspen (Populus tremuloides) series.
Mountain snowberry also occurs within the pinyon-juniper (Pinus-Juniperus spp.) zone and is
a dominant understory species within the quaking aspen type throughout the
western mountains. It is a major component on open slopes in the mountain-brush zone, where it
may form pure stands. The upper limits of mountain snowberry's
elevational range extend into the subalpine zone [33]. VALUE AND USE
IMPORTANCE TO LIVESTOCK AND WILDLIFE:Because of its abundance and wide distribution, mountain snowberry is important forage on many mountain ranges. Although not highly nutritious or palatable, mountain snowberry is frequently one of the first species to leaf out, making it a highly sought after food in the early spring [46]. Use by livestock and game is moderate throughout the summer and declines in fall. Mountain snowberry's low growth form makes its foliage easily available. Plants withstand browsing well and produce numerous basal sprouts following browsing [65]. Results of clipping experiments carried out in the mountain-brush zone of Utah indicate that mountain snowberry can withstand early season browsing if given sufficient time to recover [16]. PALATABILITY:
Mountain snowberry is readily eaten by all classes of livestock, particularly domestic sheep. Palatability varies in different localities and different plant communities. In general mountain snowberry has greater palatability in the Intermountain region than on more southern or western ranges [12]. Mountain snowberry is a highly valued elk and domestic sheep forage within quaking aspen types in Colorado and Wyoming [7]. Mountain snowberry is of no value for horses [43]. CO MT OR UT WY Cattle Fair Fair ---- Fair Fair Domestic Sheep Fair ---- ---- Good Fair Horses Poor ---- ---- Poor Fair Pronghorn ---- ---- ---- ---- Fair Elk Poor ---- ---- Good Good Mule deer Poor ---- Good Good Good Small mammals ---- ---- ---- Good Good Small nongame birds ---- ---- ---- Fair Good Upland game birds ---- ---- ---- Good Good Waterfowl ---- ---- ---- Poor Poor NUTRITIONAL VALUE:Mountain snowberry has been rated fair in energy and protein value. Nutritional value of mature browse for snowberry species is as follows [41]: Ash 8.3% Crude fiber 15.8% Ether extract 5.9% N-free extract 62.6% Protein 7.4% Calcium 1.88% Phosphorus .28% COVER VALUE:Due to its relatively low growth form, mountain snowberry provides moderate to low cover for most ungulates. In Oregon mule deer utilize mountain snowberry-dominated communities for cover where these communities provide the only diversity in large expanses of big sagebrush [34]. Mountain snowberry provides important hiding cover for a variety of small mammals and birds. Cover ratings by state have been summarized as follows [14]: OR UT WY Pronghorn ---- ---- Poor Elk ---- Poor Poor Mule deer Good Fair Fair White-tailed deer ---- ---- Fair Small mammals ---- Good Good Small nongame birds ---- Good Good Upland game birds ---- Good Good Waterfowl ---- Poor Poor VALUE FOR REHABILITATION OF DISTURBED SITES:Mountain snowberry is useful for establishing cover on bare sites and has done well when planted onto roadbanks [38]. Once established it persists well and spreads vegetatively through layering [46]. Revegetation has been particularly successful using transplanted wildings. Transplants are easily obtained by pulling up small rooted portions of plants in the early spring before leaf growth has begun. Plants can also be propagated via stem cuttings [17] and seed [38]. Mountain snowberry is recommended for riparian plantings in wet meadow and forested communities [37]. Direct seeding is generally recommended in the fall or winter on well-drained sites in the following types: big sagebrush, mountain brush, pinyon-juniper, quaking aspen openings, and subalpine herblands. Commercial seed may be dried fruits or cleaned seed. Seeds have a pronounced dormancy; acid treatments break down the seedcoat. Stratification should be employed for spring planting. Maximum storage period for mountain snowberry seeds is 10 years [54]. Cultivated seedlings can reach 30 inches (76 cm) within 5 years [38]. OTHER USES AND VALUES:Mountain snowberries are highly regarded for the beauty of their foliage and fruits and are widely grown as ornamentals [60]. MANAGEMENT CONSIDERATIONS:
Mountain snowberry's tendency to sprout enables plants to persist
and even increase following browsing. However, plant densities decrease
substantially in response to prolonged browsing [9]. BOTANICAL AND ECOLOGICAL CHARACTERISTICS
GENERAL BOTANICAL CHARACTERISTICS:Mountain snowberry is a native, deciduous, montane shrub. It is low growing, erect and sometimes trailing, with spreading to arching branches [11,25]. Although averaging 2 to 4 feet (0.6-1.2 m) in height, plants on good sites can grow up to 5 feet (1.5 m), while those on poor sites are barely a foot (0.3 m) tall. Fruits are white, berrylike drupes containing 2 nutlets, each of which contains a seed [33]. The genus Symphoricarpos is widely described as rhizomatous [4,58,66,67], but rhizomatous growth generally is less well developed in mountain snowberry than in most snowberry species [33,57,63]. RAUNKIAER LIFE FORM:Phanerophyte REGENERATION PROCESSES:
Mountain snowberry reproduces vegetatively and by seed. Individual plants produce basal sprouts from a root crown; perennating buds are usually located approximately 0.8 to 1.2 inches (2-3 cm) below the ground surface [55,65]. Layering has also been observed in mountain snowberry [11,65]. Herbarium specimens from a ponderosa pine woodland in Musselshell County, Montana, have short, distinct rhizomes [57]. SITE CHARACTERISTICS:
Mountain snowberry is found on all aspects on sites ranging from moist to fairly dry and in both acidic and basic soils. It usually occurs in sandy loam to clay loam.
Elevational ranges for some western states have been reported as follows
[14]: SUCCESSIONAL STATUS:Mountain snowberry generally establishes in early seral stages and coexists with later arriving species [27,52]. Within pinyon-juniper communities, mountain snowberry remains a major component throughout all successional stages [30]. Mountain snowberry is rarely found in dense shade [60]. Within forested communities mountain snowberry grows under open canopies and along the edges of parks, dry meadows, and other openings. SEASONAL DEVELOPMENT:
Mountain snowberry initiates growth early in the spring. Basal shoots
have been observed growing in the soil before total snowmelt [65]. The
carbohydrate reserve cycle for mountain snowberry has been studied in
the mountain-brush zone in Utah [15,23,65]. In general, reserves are at
a maximum at full flower, and this maximum is maintained as plants enter
dormancy in the fall. Reserves are approximately 25% depleted
before the end of dormancy (stem bud swelling) due to the sprouting of
basal crown buds below the snow and litter layers. The seasonal low is
reached when leaves are 1/2 to 3/4ths mature and leaf buds
still remain at the apex of the stems. At this time reserves are
approximately 40% lower than the summer high in all perennial
plant parts. From June until mid-August carbon reserves are replenished
in all plant parts. Stem growth and limited flower production and set
are all accomplished during this time. Phenological event Elevation 7,655 ft 8,450 ft 8,850 ft (2234 m) (2576 m) (2698 m) Date Flower buds bursting June 17 June 22 July 2 Leaf buds bursting May 3 May 8 May 19 In full leaf June 1 June 5 June 15 In full bloom June 26 June 30 July 8 Fruit all ripe Aug. 20 Aug. 17 Aug. 21 Fruit dropped Sept. 18 Sept. 12 Sept. 26 Leaves all dropped Oct. 6 Oct. 14 Oct. 11Phenological data for mountain snowberry plants located on a mountain-brush zone site at 6,822 feet (2080 m) in Utah are as follows [65]: May 21 Twigs elongating; sprouts appearing above ground surface May 30 Twigs elongating; leaves developing June 5 Twigs elongating; flowers beginning to open June 12 Fruit developing - early dough stage June 26 Fruit in hard dough stage July 15 Fruit disseminating Aug. 3 Fruit mostly disseminated Sept. 1 Leaves mostly abscised; mostly dormant Oct. 1 Dormant FIRE ECOLOGYFIRE ECOLOGY OR ADAPTATIONS:
Mountain snowberry is a sprouter that is usually undamaged by low-severity fire but is top-killed by most fires of medium or high severity [19,58,62,66]. Sprouts are initiated from root crowns. Perennating buds on the root crown are located 1 inch (2.5 cm) below the mineral soil surface [65]. Community dominant Range of fire intervals (yrs) interior ponderosa pine 20-42 (Pinus ponderosa var. scopulorum) Rocky Mt. Douglas-fir 10-30 (Pseudotsuga menziesii var. glauca ) subalpine fir >100 (Abies lasiocarpa) Engelmann spruce >150 (Picea engelmannii) quaking aspen 5-10 (Populus tremuloides) mountain big sagebrush 10-50 (Artemisia tridentata ssp. vaseyana) Gambel oak ---- (Quercus gambelii) POSTFIRE REGENERATION STRATEGY:
Small shrub, adventitious-bud root crown FIRE EFFECTS
IMMEDIATE FIRE EFFECT ON PLANT:Fires top-kills mountain snowberry. Although plant survival may be variable, mountain snowberry root crowns usually survive even severe fires [10,32,44,68]. DISCUSSION AND QUALIFICATION OF FIRE EFFECT:Mountain snowberry crowns that are intertwined with surrounding big sagebrush will burn even when their moisture content is relatively high [68]. PLANT RESPONSE TO FIRE:Mountain snowberry sprouts from basal buds at the root crown following fire [10,32,58,66,67]. This species is a weak sprouter [10,42,67], especially after severe fire. Although the majority of plants survive burning and sprouting is reliable, sprout production can be limited initially and may remain so for several years. Recovery rates are variable. Mountain snowberry is usually top-killed but otherwise undamaged by low-severity fire, but may show decreases the first few years after severe fire [32,44]. Even after severe fire, prefire numbers and coverages are usually regained by 15 years [4,36,42,44,68]. DISCUSSION AND QUALIFICATION OF PLANT RESPONSE:
It is unclear from the literature what part burning season plays in mountain snowberry's highly variable response to fire. On most sites plants survive low severity fires and sprout within the first year [30,32,68].
Koniak [30] found that in singeleaf pinyon-Utah juniper (Pinus monophylla-Juniperus osteosperma) woodlands of California and Nevada, occurrence of mountain snowberry was significantly higher on 1-year-old August burns than on adjacent unburned woodlands.
In Nevada mountain big sagebrush, mountain snowberry plants regained 75% of prefire plant height within 4 years of late summer fires [68]. Prefire 88 Postfire low moderate high severity severity severity 3 years 9 36 7 12 years 48 25 18 FIRE MANAGEMENT CONSIDERATIONS:
Snowberry species are capable of producing firebrand material. When
large mountain snowberry plants are located near fire control lines, they may cause
spot fires [42]. Symphoricarpos oreophilus: References1. Bartos, D. L.; Mueggler, W. F. 1981. Early succession in aspen communities following fire in western Wyoming. Journal of Range Management. 34(4): 315-318. [5100] 2. Bartos, Dale L.; Brown, James K.; Booth, Gordon D. 1994. Twelve years biomass response in aspen communities following fire. Journal of Range Management. 47: 79-83. [22891] 3. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434] 4. Blaisdell, James P. 1953. Ecological effects of planned burning of sagebrush-grass range on the Upper Snake River Plains. Tech. Bull. 1975. Washington, DC: U.S. Department of Agriculture. 39 p. [462] 5. Canon, S. K.; Urness, P. J.; DeByle, N. V. 1987. Habitat selection, foraging behavior, and dietary nutrition of elk in burned aspen forest. Journal of Range Management. 40(5): 443-438. [3453] 6. Collins, William B.; Urness, Philip J. 1983. Feeding behavior and habitat selection of mule deer and elk on northern Utah summer range. Journal of Wildlife Management. 47(3): 646-663. [6915] 7. Costello, David F. 1944. Important species of the major forage types in Colorado and Wyoming. Ecological Monographs. 14: 107-134. [693] 8. Costello, David F.; Price, Raymond. 1939. Weather and plant-development data as determinants of grazing periods on mountain range. Tech. Bull. 686. Washington, DC: U.S. Department of Agriculture. 31 p. [694] 9. Cottam, W. P.; Stewart, George. 1940. Plant succession as a result of grazing and of meadow desiccation by erosion since settlement in 1862. Journal of Forestry. 38(8): 613-626. [696] 10. Crane, Marilyn F. 1982. Fire ecology of Rocky Mountain Region forest habitat types. Final Report Contract No. 43-83X9-1-884. Missoula, MT: U.S. Department of Agriculture, Forest Service, Region 1. 272 p. On file with: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT. [5292] 11. Cronquist, Arthur; Holmgren, Arthur H.; Holmgren, Noel H.; [and others]. 1984. Intermountain flora: Vascular plants of the Intermountain West, U.S.A. Vol. 4. Subclass Asteridae, (except Asteraceae). New York: The New York Botanical Garden. 573 p. [718] 12. Dayton, William A. 1931. Important western browse plants. Misc. Publ. 101. Washington, DC: U.S. Department of Agriculture. 214 p. [768] 13. Dealy, J. Edward. 1975. Ecology of curlleaf mountain-mahogany (Cercocarpus ledifolius Nutt.) in eastern Oregon and adjacent areas. Corvallis, OR: Oregon State University. 161 p. Thesis. [21001] 14. Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information network (PIN) data base: Colorado, Montana, North Dakota, Utah, and Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 786 p. [806] 15. Donart, Gary B. 1969. Carbohydrate reserves of six mountain range plants as related to growth. Journal of Range Management. 22(6): 411-415. [817] 16. Donart, Gary B.; Cook, C. Wayne. 1970. Carbohydrate reserve content of mountain range plants following defoliation and regrowth. Journal of Range Management. 23(1): 15-19. [818] 17. Everett, Richard L.; Meeuwig, Richard O.; Robertson, Joseph H. 1978. Propagation of Nevada shrubs by stem cutting. Journal of Range Management. 31(6): 426-429. [894] 18. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905] 19. Fischer, William C.; Clayton, Bruce D. 1983. Fire ecology of Montana forest habitat types east of the Continental Divide. Gen. Tech. Rep. INT-141. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 83 p. [923] 20. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others]. 1977. Vegetation and environmental features of forest and range ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998] 21. George, Melvin R.; McKell, C. M. 1978. Distribution of food reserves in snowberry (Symphoricarpus oreophilus). Journal of Range Management. 31(2): 101-104. [1008] 22. Harrington, H. D. 1964. Manual of the plants of Colorado. 2d ed. Chicago: The Swallow Press Inc. 666 p. [6851] 23. Hess, Karl; Wasser, Clinton H. 1982. Grassland, shrubland, and forestland habitat types of the White River-Arapaho National Forest. Final Report. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 335 p. [1142] 24. Hironaka, M.; Fosberg, M. A.; Winward, A. H. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 44 p. [1152] 25. Hitchcock, C. Leo; Cronquist, Arthur. 1973. Flora of the Pacific Northwest. Seattle, WA: University of Washington Press. 730 p. [1168] 26. Hoffman, George R.; Alexander, Robert R. 1983. Forest vegetation of the White River National Forest in western Colorado: a habitat type classification. Res. Pap. RM-249. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 36 p. [1178] 27. Humphrey, L. David. 1984. Patterns and mechanisms of plant succession after fire on Artemisia-grass sites in southeastern Idaho. Vegetatio. 57: 91-101. [1214] 28. Kartesz, John T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland. Volume I--checklist. 2nd ed. Portland, OR: Timber Press. 622 p. [23877] 29. Kearney, Thomas H.; Peebles, Robert H.; Howell, John Thomas; McClintock, Elizabeth. 1960. Arizona flora. 2d ed. Berkeley, CA: University of California Press. 1085 p. [6563] 30. Koniak, Susan. 1985. Succession in pinyon-juniper woodlands following wildfire in the Great Basin. The Great Basin Naturalist. 45(3): 556-566. [1371] 31. Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation of the conterminous United States. Special Publication No. 36. New York: American Geographical Society. 77 p. [1384] 32. Kuntz, David Edward. 1982. Plant response following spring burning in an Artemisia tridentata subsp. vaseyana/ Festuca idahoensis habitat type. Moscow, ID: University of Idaho. 73 p. Thesis. [1388] 33. Lackschewitz, Klaus. 1991. Vascular plants of west-central Montana--identification guidebook. Gen. Tech. Rep. INT-227. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 648 p. [13798] 34. Leckenby, Donavin A.; Sheehy, Dennis P.; Nellis, Carl H.; [and others]. 1982. Wildlife habitats in managed rangelands--the Great Basin of southeastern Oregon: mule deer. Gen. Tech. Rep. PNW-139. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 40 p. [1432] 35. Lyon, L. Jack. 1971. Vegetal development following prescribed burning of Douglas-fir in south-central Idaho. Res. Pap. INT-105. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 30 p. [1495] 36. McKell, Cyrus M. 1950. A study of plant succession in the oak brush (Quercus gambelii) zone after fire. Salt Lake City, UT: University of Utah. 79 p. Thesis. [1608] 37. Monsen, Stephen B. 1983. Plants for revegetation of riparian sites within the Intermountain region. In: Monsen, Stephen B.; Shaw, Nancy, compilers. Managing Intermountain rangelands--improvement of range and wildlife habitats: Proceedings of symposia; 1981 September 15-17; Twin Falls, ID; 1982 June 22-24; Elko, NV. Gen. Tech. Rep. INT-157. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: 83-89. [9652] 38. Monsen, Stephen B.; Christensen, Donald R. 1975. Woody plants for rehabilitating rangelands in the Intermountain Region. In: Stutz, Howard C., ed. Wildland shrubs: Proceedings--symposium and workshop; 1975 November 5-7; Provo, UT. Provo, UT: Brigham Young University: 72-119. [1680] 39. Mueggler, Walter F.; Campbell, Robert B., Jr. 1982. Aspen community types on the Caribou and Targhee National Forests in southeastern Idaho. Res. Pap. INT-294. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32 p. [1713] 40. Mueggler, Walter F.; Campbell, Robert B., Jr. 1986. Aspen community types of Utah. Res. Pap. INT-362. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 69 p. [1714] 41. National Academy of Sciences. 1971. Atlas of nutritional data on United States and Canadian feeds. Washington, DC: National Academy of Sciences. 772 p. [1731] 42. Neuenschwander, L. F. [n.d.]. The fire induced autecology of selected shrubs of the cold desert and surrounding forests: A-state-of-the-art-review. Moscow, ID: University of Idaho, College of Forestry, Wildlife and Range Sciences. In cooperation with: Fire in Multiple Use Management, Research, Development, and Applications Program, Northern Forest Fire Laboratory, Missoula, MT. 30 p. Unpublished manuscript on file at: U.S. Department of Agriculture, Forest Service, Intermountain Fire Sciences Laboratory, Missoula, MT. [1747] 43. Noste, Nonan V.; Bushey, Charles L. 1987. Fire response of shrubs of dry forest habitat types in Montana and Idaho. Gen. Tech. Rep. INT-239. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 22 p. [255] 44. Pechanec, Joseph F.; Stewart, George; Blaisdell, James P. 1954. Sagebrush burning good and bad. Farmers' Bulletin No. 1948. Washington, DC: U.S. Department of Agriculture. 34 p. [1859] 45. Pfister, Robert D.; Kovalchik, Bernard L.; Arno, Stephen F.; Presby, Richard C. 1977. Forest habitat types of Montana. Gen. Tech. Rep. INT-34. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 174 p. [1878] 46. Plummer, A. Perry; Christensen, Donald R.; Monsen, Stephen B. 1968. Restoring big-game range in Utah. Publ. No. 68-3. Ephraim, UT: Utah Division of Fish and Game. 183 p. [4554] 47. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843] 48. Schlatterer, Edward F. 1972. A preliminary description of plant communities found on the Sawtooth, White Cloud, Boulder and Pioneer Mountains. Unpublished report. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region. 111 p. [2076] 49. Shiflet, Thomas N., ed. 1994. Rangeland cover types of the United States. Denver, CO: Society for Range Management. 152 p. [23362] 50. Stanton, Frank. 1974. Wildlife guidelines for range fire rehabilitation. Tech. Note 6712. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 90 p. [2221] 51. Steele, Robert; Cooper, Stephen V.; Ondov, David M.; [and others]. 1983. Forest habitat types of eastern Idaho-western Wyoming. Gen. Tech. Rep. INT-144. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 122 p. [2230] 52. Steele, Robert; Geier-Hayes, Kathleen. 1995. Major Douglas-fir habitat types of central Idaho: a summary of succession and management. Gen. Tech. Rep. INT-GTR-331. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 23 p. [29363] 53. Steele, Robert; Pfister, Robert D.; Ryker, Russell A.; Kittams, Jay A. 1981. Forest habitat types of central Idaho. Gen. Tech. Rep. INT-114. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 138 p. [2231] 54. Stevens, Richard; Jorgensen, Kent R.; Davis, James N. 1981. Viability of seed from thirty-two shrub and forb species through fifteen years of warehouse storage. The Great Basin Naturalist. 41(3): 274-277. [2244] 55. Stickney, Peter F. 1980. Data base for post-fire succession, first 6 to 9 years, in Montana larch-fir forests. Gen. Tech. Rep. INT-62. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 133 p. [6583] 56. Stickney, Peter F. 1989. Seral origin of species originating in northern Rocky Mountain forests. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT; RWU 4403 files. 10 p. [20090] 57. Stickney, Peter F. 1999. [Memo to Keith Aleksoff]. September 1. 1 leaf. On file at: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Missoula, MT; RWU 4403 files. [30281] 58. Tisdale, E. W.; Hironaka, M. 1981. The sagebrush-grass region: a review of the ecological literature. Bull. 33. Moscow, ID: University of Idaho, Forest, Wildlife and Range Experiment Station. 31 p. [2344] 59. Tweit, Susan J.; Houston, Kent E. 1980. Grassland and shrubland habitat types of the Shoshone National Forest. Cody, WY: U.S. Department of Agriculture, Forest Service, Shoshone National Forest. 143 p. [2377] 60. U.S. Department of Agriculture, Forest Service. 1937. Range plant handbook. Washington, DC. 532 p. [2387] 61. U.S. Department of Agriculture, Soil Conservation Service. 1994. Plants of the U.S.--alphabetical listing. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service. 954 p. [23104] 62. Vallentine, John F. 1971. Range development and improvements. Provo, UT: Brigham Young University Press. 516 p. [2414] 63. Vines, Robert A. 1960. Trees, shrubs, and woody vines of the Southwest. Austin, TX: University of Texas Press. 1104 p. [7707] 64. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. The Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944] 65. Willard, E. Earl. 1971. Some factors involved in activation of sprouting in little rabbitbrush and snowberry on summer range. Logan, UT: Utah State University. 116 p. Dissertation. [2565] 66. Wright, Henry A.; Neuenschwander, Leon F.; Britton, Carlton M. 1979. The role and use of fire in sagebrush-grass and pinyon-juniper plant communities: A state-of-the-art review. Gen. Tech. Rep. INT-58. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 48 p. [2625] 67. Young, Richard P. 1983. Fire as a vegetation management tool in rangelands of the Intermountain Region. In: Monsen, Stephen B.; Shaw, Nancy, compilers. Managing Intermountain rangelands--improvement of range and wildlife habitats: Proceedings; 1981 September 15-17; Twin Falls, ID; 1982 June 22-24; Elko, NV. Gen. Tech. Rep. INT-157. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: 18-31. [2681] 68. Zschaechner, Greg A. 1985. Studying rangeland fire effects: a case study in Nevada. In: Sanders, Ken; Durham, Jack, eds. Rangeland fire effects: Proceedings of the symposium; 1984 November 27-29; Boise, ID. Boise, ID: U.S. Department of the Interior, Bureau of Land Managment, Idaho State Office: 66-84. [2692] Symphoricarpos oreophilus Index
Related categories for SPECIES: Symphoricarpos oreophilus | Mountain Snowberry |
About Us | Contact Us | Terms of Use | Privacy | Links Directory |
1Up Info All Rights reserved. Site best viewed in 800 x 600 resolution. |